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Comment on ‘‘Spectral filters in quantum mechanics: A measurement theory perspective’’
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We criticize a paper by Vijay and Wyatt@Phys. Rev. E63, 4351~2000!#, in which the authors suggest that
energy levels computed, from the same set of matrix-vector products, with the filter diagonalization method
~FDM! and the Fourier spectral analysis using the same Chebyshev correlation function are of comparable
accuracy. We explain why the FDM is superior and demonstrate it numerically, using the same test matrix as
that employed in the above paper. We also compare the FDM with the Lanczos method, another commonly
used iterative technique for computing eigenvalues. We find that eigenvalues in a low-density region near the
middle of the spectrum converge more quickly with the FDM, but that the Lanczos method requires fewer
matrix-vector products to converge all the eigenvalues.
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In a recent paper@1#, Vijay and Wyatt~VW! presented a
controversial interpretation of the filter diagonalizatio
method~FDM! in terms of ‘‘measurement theory.’’ In addi
tion, the authors questioned previous statements that
FDM could ‘‘bypass the Fourier transform~FT! uncertainty
principle’’ ~e.g., in Refs.@2–5#!, appealing to both ‘‘the fun-
damental principles of quantum mechanics’’ and their n
merical calculations. We disagree with the interpretation
VW of their own numerical result, which led to the incorre
conclusions about the relative efficiencies of the FDM a
FT spectral analysis. We avoid any philosophical discuss
and concentrate on practical issues. We clarify the ‘‘byp
the FT uncertainty principle’’ statement and show that ene
levels obtained from the FDM are clearly better than the
results reported in Ref.@1#, thus demonstrating the validity o
the statement. In addition, we compare the FDM and
Cullum and Willoughby~CW! Lanczos approach@11#.

The FDM is a high-resolution linear algebraic techniq
for spectral analysis of time signals. It is based on the so
tion of a harmonic inversion problem@2–4#. In @3#, for a
Hermitian K3K Hamiltonian matrixH, it was shown how
the FDM can be used to process a Chebyshev correla
function,cn5^FuTn(H)uF&, by fitting it to the form

cn5 (
k51

K

dk cos~nvk!, n50, . . . ,N, ~1!

to extract amplitudesdk and frequenciesvk and thereby de-
termine eigenvalues ofH. For convenience, without loss o
generality, it is assumed here that the spectrum of the Ha
tonian matrix H is restricted to the interval@21,1#. The
frequencies yield the eigenvalues ofH according toEk
5cos(vk). To avoid missing eigenvalues, one usually use
random starting vectorF ~unless some additional informa
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tion about the system is available!, for which it is unlikely
that any of thedk would be so small as to hinder the conve
gence ofvk .

The spectral analysis of the same sequence$cn% can also
be performed in the frequency domain by analyzing the fin
FT spectrum@6,7#,

r~E!5@12cos~v!#21/2(
n50

N

~12dn0/2!cos~nv!cnf n ,

E5cos~v!, ~2!

using an appropriate apodization functionf n ~to remove the
wiggles resulting from the truncation of the signal!. If the
assumption of Eq.~1! is satisfied~which is the case here!, the
FDM significantly outperforms the FT analysis for the pro
lem of extracting the eigenvalues ofH. To be more quanti-
tative, the spectral resolution of the finite FT is defined
the FT uncertainty principle,

dv;pN21 or dE;pA12E2N21. ~3!

~Note that the spectral range ofH is 2 and that the frequenc
is mapped to energy according toE5cosv.! This restriction
on the accuracy of the FT spectrum limits the accuracy of
eigenvaluesEk extracted from the positions of the maxima
r(E).

It is very well documented that the eigenfrequenciesvk
and, therefore, the eigenvaluesEk can, generally, be esti
mated much more accurately, from the same set ofcn’s, us-
ing the FDM. This is true simply because by assuming
form of Eq.~1! one exploits important additional informatio
about the signal, which is ignored in the FT spectral analy
A simple algebraic analysis leads to the conclusion that th
is no fundamental lower bound to the error in the eigenv
ues determined from the solution of the harmonic invers
problem~1! by the FDM, provided the local average spaci
of the eigenfrequenciesvk or eigenvaluesEk satisfy the ap-
proximate relationships
©2002 The American Physical Society01-1
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^Dv&.2pN21 or ^DE&.2pA12E2N21. ~4!

This, in particular, means that the eigenvalues at the edge
the spectrum and in the sparse spectral regions will conv
more quickly than those in the dense regions. The FD
computes eigenvalues in a subspace. The signal lengN
used in the spectral analysis implies an underlying Kry
basis size ofM5N/2. Due to the subspace aspect, once
eigenvalue has started to converge, its error will decay ex
nentially asN increases, so just a slight increase ofN can
increase the accuracy by orders of magnitude@3#. This
should be compared to the FT error estimate~3!, that decays
as slowly asN21. Of course, this unfavorable convergen
rate cannot be bypassed by any accurate method to locat
maxima in the FT spectrum, as suggested without any v
fication by VW, because the ‘‘information’’ is already lost b
implementing the truncated FT. However, in order to mak
more accurate prediction of the rate of convergence
should take into account the actual distribution of theEk’s,
roundoff errors, noise, the algorithm implementation, e
For more details and numerical examples, we refer the re
to the literature~see, e.g., Refs.@2–5,8–10#!.

Statements in previous papers claiming that the FDM
passes the uncertainty principle were not meant to imply
a single filtered basis function had any properties that v
lated the uncertainty principle. Note that in the FDM, t
individual filtered basis functions are only intermediate
sults, used as stepping stones to obtain eigenvalues. Ins
the statements were simply meant to indicate that, if one u
the FDM and the FT to compute the underlying frequenc
and, in particular, the energy levels, from the same seque
$cn% ~i.e., using the same number of matrix-vector produc!,
the FDM estimates of the eigenvalues will always be m
accurate. On the other hand, the FDM estimate of
infinite-time Fourier spectrum~i.e., a spectrum as a functio
of the real frequency! obtained from truncated time doma
data will not always be better than the finite FT spect
estimate. In fact, there are published examples of signals
did not fit well with the form of the harmonic inversio
problem~not the case here!, for which a FT provided a bette
spectral estimate than that of the FDM~see, e.g., Ref.@10#!.
Note that there is no need to choose an artificial star
vector ~e.g., one computed from eigenvectors of the Ham
tonian matrix! to obtain excellent results with the FDM.

To support our statements, we examine the numerica
sults reported by VW@1# and compare them with our ow
FDM calculations. We use their 200032000 test matrix. We
useC50.04 which is the value also used by VW~although
C50.05 is indicated in the paper!. The eigenvalues of this
matrix form 10 bands. Within each band, the eigenvalue
is a smooth function of energy and can, therefore, be ass
ated with the locally averaged spacing^DE&, except for the
eigenvalues at the edges of the bands.

As far as we understand, the FDM version of Ref.@3# was
rederived and used by VW in Appendix A of Ref.@1#. To use
the FDM well, it is important to choose the width of th
spectral window,W5uvmax2vminu ~in the frequency do-
main!, the number of Fourier basis functions in the windo
L, consistently with the signal lengthN, and to ensure tha
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converged results are obtained with as few matrix-vec
products as possible. VW used the same values ofL andW
regardless ofN. Instead, it is better to chooseL andW so that
they vary withN. The best performance is achieved when t
following approximate condition forW, L, andN is satisfied
@3#:

L/W>N/2p. ~5!

~It is usually safe to useL/W51.1N/2p if L is not too small.
Also, note thatL should not be chosen bigger than the size
the Krylov subspaceM5N/2 to avoid the use of a linear
dependent basis.! When for a particularN the eigenvalues are
not converged,N is increased. As long as Eq.~5! holds, one
has some flexibility in choosing the parametersL and W,
e.g., one can keepL fixed and decreaseW, or fix W and
increaseL. It is also important to realize that, if condition~4!
is nearly satisfied for a particularN5N0, then increasingN
substantially with Eq.~5! satisfied will result in a very ill-
conditioned generalized eigenvalue problem, that must
handled with care. The approach used by VW~i.e., fix L and
W and increaseN) is very dangerous as well because f
large values ofN, whenL/W,N/2p, it may lead to poorly
converged or even missing eigenvalues.

To fairly compare the performance of the FDM and F
one must compare eigenvalues computed with both meth
to numerically exact eigenvalues. According to Table III
Ref. @1#, the FDM results for most of the eigenvalues in
small energy window consisting of 33 eigenvalues are c
verged to at least eight figures if one uses a signal of len
N513 000 (M56500 matrix-vector products!. Of course, ei-
genvalues in sparser regions and at the edges of the en
bands converge more quickly. Also, note that it is often u
necessary to compute eigenvalues to this accuracy. Our F
results~see below! indicate that most energy levels in th
window can be computed with fewer matrix-vector produc
According to Eq.~3!, to calculate the eigenvalues to~a more
reasonable!, say, six digit, accuracy by FT spectral analys
one would need, roughly,N;106 or N;105 ~both estimates
are much larger than theN required to obtain converge
eigenvalues with the FDM!.

In their Fig. 2, VW show the spectrumr(E) computed
from Eq. ~2! with f n51 and usingN513 000. The authors
claim that their figure has 35 peaks. In addition, they cla
that first and second derivative plots reveal that two pe
are spurious and conclude that the FT spectrum corre
estimates the eigenvalues and that the performance of
FDM and FT is similar. In Fig. 1, we reproduce the upp
panel of Fig. 2 of Ref.@1# and superimpose the exa
eigenenergies from Table III of Ref.@1#. Clearly, the posi-
tions of only several of the largest peaks correspond to
curate eigenvalues. The other peaks~more than two! are spu-
rious. Where the spectrum is dense there are fewer pe
than eigenvalues, while where the spectrum is sparse, t
are extra peaks. Some of the ‘‘spurious FT peaks’’ are qu
large, even larger than the true unresolved peaks, and th
why the latter are not seen. These spurious peaks are ca
by the sinc wiggles of the strong peaks resulting from
truncation of the Fourier series in Eq.~2!. We note that with
1-2
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a more appropriate apodization functionf n ~e.g., Gaussian!
the sinc wiggles could be suppressed and fewer~than 33!
peaks would appear in the spectrum. In this case, it wo
become apparent that, unless an artificial starting vecto
used, a much longer signal would be required to reprod
even the right number of eigenvalues. Note that when co

FIG. 1. The finite FT spectrum~solid line! of a Chebyshev cor-
relation function reproduced from Fig. 2 of Ref.@1#. It was com-
puted by Eq.~2! with f n51 and N513 000 (M56500 matrix-
vector products!. The dotted lines show the positions of the exa
eigenenergies. The latter could be computed to eight digit accu
for most eigenvalues in this window using the FDM.
02870
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paring the number of matrix-vector products required
compute energy levels by extracting them fromr(E) and by
using the FDM, it is essential to compare energy levels
similar accuracy. It would, for example, be misleading
compare the number of matrix-vector products required
reproduce the right number of peaks inr(E) with the num-
ber of matrix-vector products required using the FDM
compute eigenvalues to eight significant figures.

As has been clarified and re-demonstrated in the pre
paper, the FDM is an efficient tool for calculating ener
levels. It does enable one to calculate energy levels w
fewer matrix-vector products than would be required if o
used an FT. It is the diagonalization aspect that enables
FDM to ‘‘bypass the Fourier transform uncertainty pri
ciple.’’ Each vector of the FDM subspace is a linear com
nation of the Krylov vectorsv0 ,v1 , . . . ,vM , where vk
5HkF andF is a starting vector. With exact arithmetic~i.e.,
no roundoff errors! and withM>L>K, whereK is the size
of H, the FDM eigenvalues are exact even ifM5N/2 is
smaller than that defined by condition~4!. In practice, to
reduce the size of the matrix whose eigenvalues are c
puted and make the method more numerically stable,
choosesL!K and choosesM using Eq.~4!. This makes the
FDM numerically stable at the price of slowing down th
convergence~as compared to the unrealistic case of a cal
lation in exact arithmetic with a larger value ofL and a
smaller value ofM ).

The Lanczos method extracts eigenvalues ofH from the
same set of Krylov vectors. In the Lanczos method, the K

t
cy
re shown
FIG. 2. Convergence behavior of the FDM and the Lanczos method for the energy window of Fig. 1. The exact eigenvalues a
with dotted lines.
1-3
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FIG. 3. Same as Fig. 2, but for another energy window, corresponding to Table IV of Ref.@1#. Note that the eigenvalue distribution i
much less uniform here.
ut

be
u

s
re
tri
n
ai
lo
i

a
pa
i

t
e
e
ul
ie

th
o

n

-
ze

in-

to
oxi-
rgy

,
ed

ra-
e
ore,
lues
nc-

arse

eir
on-

a-
n-

ive
m-

the
DM
tain
lov vectors are combined to yield~formally! orthogonal
Lanczos vectors. From the Lanczos vectors, one comp
the nonzero elements of a tridiagonal matrixTM , some of
whose eigenvalues are also eigenvalues ofH. Although, in
practice, the orthogonality of the Lanczos vectors is lost
cause of roundoff errors, it is still possible to compute n
merically exact eigenvalues ofH by calculating eigenvalue
of TM @11#. The FDM and the Lanczos method, therefo
share many advantages. Both require only evaluating ma
vector products and both can be implemented by storing o
a few vectors. The FDM and the Lanczos method obt
eigenvalues from the same Krylov subspace but they exp
different strategies for reducing the matrix representation
the Krylov basis to something manageable. The subsp
spanned by the Lanczos vectors is larger than the subs
spanned by the filtered vectors in the FDM. Therefore,
exact arithmetic~or when the roundoff errors are irrelevan!
the Lanczos algorithm would always yield more accurate
genvalues. With finite arithmetic it is not obvious wheth
the FDM or the Lanczos strategy will be better. Some res
indicate that the Lanczos method is sometimes more effic
@12,13#.

For the matrix considered by VW, we have compared
FDM and the Lanczos algorithm. Spurious eigenvalues
TM are detected and removed using the test of CW@11#. The
results for two representative energy windows are show
Figs. 2 and 3 corresponding to, respectively, Tables III~and
Fig. 1 here! and IV of Ref.@1#. For each figure, when chang
ing N we implemented a fixed energy window with the si
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by about 10% bigger than that reported by VW~to exclude
the poorly converged eigenvalues at the edges of the w
dow! and usingL51.1WN/2p according to Eq.~5!. First,
note that the number of matrix-vector products required
converge the eigenvalues using the FDM is, indeed, appr
mately inversely proportional to the locally averaged ene
gap. Therefore, the statements by VW in Ref.@1#, that the
eigenvalues in Table III~Fig. 2 here! requiredM56500 and
in Table IV ~Fig. 3 here! M53500 for the FDM to converge
are quite misleading. It is well known that widely spac
eigenvalues and eigenvalues closer to the top~or bottom! of
the spectrum generally converge with fewer Lanczos ite
tions @11#. Apparently, the FDM also follows this rule. Th
eigenvalues of Fig. 3 are more widely spaced and, theref
converge more quickly by both methods than the eigenva
of Fig. 2. Convergence is more sudden when using the La
zos method. Note that some FDM eigenvalues in the sp
energy region near the middle of the spectrum~see Fig. 3!
were converged with fewer matrix-vector products than th
Lanczos counterparts. However, the Lanczos method c
verged atM;4500 for all the 2000 eigenvalues of this m
trix, while M;6500 was needed to converge all the eige
values by the FDM.

To conclude, we have clarified the issue of the relat
efficiency of spectral analyses by the FDM and FT and de
onstrated for the test matrix of Ref.@1# that the FDM is
substantially more efficient. We have also compared
FDM and the Lanczos method. The convergence of the F
is more uniform and predictable and may be faster for cer
1-4
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eigenvalues in the sparse spectral regions of the test m
considered, while to converge all the eigenvalues of this m
trix, the Lanczos method required less matrix-vector pr
ucts than FDM.
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