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Comment on “Spectral filters in quantum mechanics: A measurement theory perspective”
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We criticize a paper by Vijay and WydtPhys. Rev. E63, 4351(2000], in which the authors suggest that
energy levels computed, from the same set of matrix-vector products, with the filter diagonalization method
(FDM) and the Fourier spectral analysis using the same Chebyshev correlation function are of comparable
accuracy. We explain why the FDM is superior and demonstrate it numerically, using the same test matrix as
that employed in the above paper. We also compare the FDM with the Lanczos method, another commonly
used iterative technique for computing eigenvalues. We find that eigenvalues in a low-density region near the
middle of the spectrum converge more quickly with the FDM, but that the Lanczos method requires fewer
matrix-vector products to converge all the eigenvalues.
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In a recent paperl], Vijay and Wyatt(VW) presented a tion about the system is availapldor which it is unlikely
controversial interpretation of the filter diagonalization that any of thed, would be so small as to hinder the conver-
method(FDM) in terms of “measurement theory.” In addi- gence ofw.
tion, the authors questioned previous statements that the The spectral analysis of the same sequdgg can also
FDM could “bypass the Fourier transforf®T) uncertainty  be performed in the frequency domain by analyzing the finite
principle” (e.g., in Refs[2-5]), appealing to both “the fun- FT spectrun{6,7],
damental principles of quantum mechanics” and their nu-
merical calculations. We disagree with the interpretation by i
VW of their own numerical result, which led to the incorrect ~ P(E)=[1—codw)] nZO (1= é8no/2)cognw)cyfy,
conclusions about the relative efficiencies of the FDM and -

FT spectral analysis. We avoid any philosophical discussion E=cog o) )
and concentrate on practical issues. We clarify the “bypass '

the FT uncertainty principle” statement and show that energysing an appropriate apodization functifin(to remove the
levels obtained from the FDM are clearly better than the FTwiggIes resulting from the truncation of the signaf the
results reported in Reﬁ:ll]l, thus demonstrating the validity of assumption of Eq) is satisfiedwhich is the case hergthe
the statement. In addition, we compare the FDM and thgp significantly outperforms the FT analysis for the prob-
Cullum and Willoughby(CW) Lanczos approacfil]. lem of extracting the eigenvalues Bff. To be more quanti-

The FDM is a high-resolution linear algebraic techniqueative the spectral resolution of the finite FT is defined by
for spectral analysis of time signals. It is based on the solug,e T uncertainty principle

tion of a harmonic inversion problei2—4]. In [3], for a

N

Hermitian KX K Hamiltonian matrixH, it was shown how Sw~mN"1 or 5E~w\/ﬁN‘1. 3)
the FDM can be used to process a Chebyshev correlation
function, ¢, =(®|T,(H)|®), by fitting it to the form (Note that the spectral range Kfis 2 and that the frequency
is mapped to energy according o= cosw.) This restriction
K on the accuracy of the FT spectrum limits the accuracy of the
cn:k21 dycoghwy), n=0,... N, (1) eigenvalue&, extracted from the positions of the maxima of
- p(E).

It is very well documented that the eigenfrequencigs
to extract amplituded, and frequencies, and thereby de- and, therefore, the eigenvalu& can, generally, be esti-
termine eigenvalues dfi. For convenience, without loss of mated much more accurately, from the same set,sf us-
generality, it is assumed here that the spectrum of the Hamiing the FDM. This is true simply because by assuming the
tonian matrixH is restricted to the interval—1,1]. The  form of Eq.(1) one exploits important additional information
frequencies yield the eigenvalues &f according toE,  about the signal, which is ignored in the FT spectral analysis.
=C0s(wy). To avoid missing eigenvalues, one usually uses & simple algebraic analysis leads to the conclusion that there
random starting vecto® (unless some additional informa- is no fundamental lower bound to the error in the eigenval-
ues determined from the solution of the harmonic inversion
problem(1) by the FDM, provided the local average spacing
*Email address: mandelsh@uci.edu of the eigenfrequencies, or eigenvalue&, satisfy the ap-
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(Aw)>27N"1 or (AE)>27J1-E>N"L. (4)  converged results are obtained with as few matrix-vector
products as possible. VW used the same values afid W
This, in particular, means that the eigenvalues at the edges &¢gardless oN. Instead, it is better to choogeandW so that
the spectrum and in the sparse spectral regions will converg@ey vary withN. The best performance is achieved when the
more quickly than those in the dense regions. The FDMollowing approximate condition fow, L, andN is satisfied
computes eigenvalues in a subspace. The signal leNgth [3]:
used in the spectral analysis implies an underlying Krylov
basis size oM =N/2. Due to the subspace aspect, once an L/W=N/2m. 5
eigenvalue has started to converge, its error will decay expo-
nentially asN increases, so just a slight increaseMftan (It is usually safe to use/W= 1.IN/27 if L is not too small.
increase the accuracy by orders of magnity@¢ This  Also, note that should not be chosen bigger than the size of
should be compared to the FT error estim@g that decays the Krylov subspacé =N/2 to avoid the use of a linear-
as slowly asN~1. Of course, this unfavorable convergence dependent basiswhen for a particulaN the eigenvalues are
rate cannot be bypassed by any accurate method to locate thet convergedN is increased. As long as E(p) holds, one
maxima in the FT spectrum, as suggested without any verihas some flexibility in choosing the parametérsand W,
fication by VW, because the “information” is already lost by e.g., one can keep fixed and decreas®/, or fix W and
implementing the truncated FT. However, in order to make ancreased.. It is also important to realize that, if conditigd)
more accurate prediction of the rate of convergence one nearly satisfied for a particuldd= N, then increasingN
should take into account the actual distribution of Hgs, substantially with Eq(5) satisfied will result in a very ill-
roundoff errors, noise, the algorithm implementation, etc.conditioned generalized eigenvalue problem, that must be
For more details and numerical examples, we refer the readéandled with care. The approach used by ViW., fix L and
to the literature(see, e.g., Ref§2-5,8—10Q). W and increaseN) is very dangerous as well because for
Statements in previous papers claiming that the FDM byi{arge values o, whenL/W<N/27, it may lead to poorly
passes the uncertainty principle were not meant to imply thatonverged or even missing eigenvalues.
a single filtered basis function had any properties that vio- To fairly compare the performance of the FDM and FT,
lated the uncertainty principle. Note that in the FDM, the one must compare eigenvalues computed with both methods
individual filtered basis functions are only intermediate re-to numerically exact eigenvalues. According to Table Il of
sults, used as stepping stones to obtain eigenvalues. Instedkf. [1], the FDM results for most of the eigenvalues in a
the statements were simply meant to indicate that, if one usesmall energy window consisting of 33 eigenvalues are con-
the FDM and the FT to compute the underlying frequencieserged to at least eight figures if one uses a signal of length
and, in particular, the energy levels, from the same sequend¢= 13 000 (M =6500 matrix-vector productsOf course, ei-
{cn} (i.e., using the same number of matrix-vector products genvalues in sparser regions and at the edges of the energy
the FDM estimates of the eigenvalues will always be morebands converge more quickly. Also, note that it is often un-
accurate. On the other hand, the FDM estimate of thenecessary to compute eigenvalues to this accuracy. Our FDM
infinite-time Fourier spectrurfi.e., a spectrum as a function results(see below indicate that most energy levels in this
of the real frequengyobtained from truncated time domain window can be computed with fewer matrix-vector products.
data will not always be better than the finite FT spectralAccording to Eq.(3), to calculate the eigenvalues @ more
estimate. In fact, there are published examples of signals thatasonablg say, six digit, accuracy by FT spectral analysis,
did not fit well with the form of the harmonic inversion one would need, roughlyy~ 10° or N~ 10° (both estimates
problem(not the case heyefor which a FT provided a better are much larger than thdl required to obtain converged
spectral estimate than that of the FOkke, e.g., Ref.10]). eigenvalues with the FDM
Note that there is no need to choose an artificial starting In their Fig. 2, VW show the spectrum(E) computed
vector (e.g., one computed from eigenvectors of the Hamil-from Eq. (2) with f,=1 and using\N=13000. The authors
tonian matriy to obtain excellent results with the FDM. claim that their figure has 35 peaks. In addition, they claim
To support our statements, we examine the numerical rethat first and second derivative plots reveal that two peaks
sults reported by VW1] and compare them with our own are spurious and conclude that the FT spectrum correctly
FDM calculations. We use their 208@®000 test matrix. We estimates the eigenvalues and that the performance of the
useC=0.04 which is the value also used by Vi&lthough FDM and FT is similar. In Fig. 1, we reproduce the upper
C=0.05 is indicated in the paperThe eigenvalues of this panel of Fig. 2 of Ref.[1] and superimpose the exact
matrix form 10 bands. Within each band, the eigenvalue gagigenenergies from Table IIl of Refl]. Clearly, the posi-
is a smooth function of energy and can, therefore, be assodiions of only several of the largest peaks correspond to ac-
ated with the locally averaged spaci{yE), except for the curate eigenvalues. The other peék®re than twd are spu-
eigenvalues at the edges of the bands. rious. Where the spectrum is dense there are fewer peaks
As far as we understand, the FDM version of R8.was  than eigenvalues, while where the spectrum is sparse, there
rederived and used by VW in Appendix A of R¢L]. Touse are extra peaks. Some of the “spurious FT peaks” are quite
the FDM well, it is important to choose the width of the large, even larger than the true unresolved peaks, and that is
spectral window,W=|wna— @min| (in the frequency do- why the latter are not seen. These spurious peaks are caused
main), the number of Fourier basis functions in the window, by the sinc wiggles of the strong peaks resulting from the
L, consistently with the signal lengt, and to ensure that truncation of the Fourier series in E@®). We note that with
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paring the number of matrix-vector products required to
P(E) compute energy levels by extracting them frpE) and by
using the FDM, it is essential to compare energy levels of
similar accuracy. It would, for example, be misleading to
compare the number of matrix-vector products required to
reproduce the right number of peaksd(E) with the num-
ber of matrix-vector products required using the FDM to
compute eigenvalues to eight significant figures.

As has been clarified and re-demonstrated in the present

paper, the FDM is an efficient tool for calculating energy
{\ \W ’\ levels. It does enable one to calculate energy levels with
fewer matrix-vector products than would be required if one
used an FT. It is the diagonalization aspect that enables the
: : : : : : : FDM to “bypass the Fourier transform uncertainty prin-
0796 0797 0.798 0799 0.800 0.801 0.802 0.803  (jple.” Each vector of the FDM subspace is a linear combi-
Energy, £ nation of the Krylov vectorsvy,vy, ...,W, where v,

FIG. 1. The finite FT spectrurtsolid line) of a Chebyshev cor- = H® and® is a starting vector. With exact arithmetice.,
relation function reproduced from Fig. 2 of Rél]. It was com- N0 roundoff errorsand withM=L=K, whereK is the size
puted by Eq.(2) with f,=1 and N=13000 M=6500 matrix- ©Of H, the FDM eigenvalues are exact evenMf=N/2 is
vector products The dotted lines show the positions of the exactSmaller than that defined by conditid#). In practice, to
eigenenergies. The latter could be computed to eight digit accuragieduce the size of the matrix whose eigenvalues are com-
for most eigenvalues in this window using the FDM. puted and make the method more numerically stable, one

choosed <K and chooseM using Eq.(4). This makes the
a more appropriate apodization functibop (e.g., Gaussign FDM numerically stable at the price of slowing down the
the sinc wiggles could be suppressed and feitlean 33  convergencéas compared to the unrealistic case of a calcu-
peaks would appear in the spectrum. In this case, it wouldation in exact arithmetic with a larger value &f and a
become apparent that, unless an artificial starting vector ismaller value oiM).
used, a much longer signal would be required to reproduce The Lanczos method extracts eigenvalueofrom the
even the right number of eigenvalues. Note that when comsame set of Krylov vectors. In the Lanczos method, the Kry-
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FIG. 2. Convergence behavior of the FDM and the Lanczos method for the energy window of Fig. 1. The exact eigenvalues are shown
with dotted lines.
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FIG. 3. Same as Fig. 2, but for another energy window, corresponding to Table IV ofiReflote that the eigenvalue distribution is
much less uniform here.

lov vectors are combined to yielformally) orthogonal by about 10% bigger than that reported by ¥ exclude
Lanczos vectors. From the Lanczos vectors, one computdle poorly converged eigenvalues at the edges of the win-
the nonzero elements of a tridiagonal maffiy, some of dow) and usingL =1.1WN/27 according to Eq(5). First,
whose eigenvalues are also eigenvaluesiofAlthough, in  note that the number of matrix-vector products required to
practice, the orthogonality of the Lanczos vectors is lost beeonverge the eigenvalues using the FDM is, indeed, approxi-
cause of roundoff errors, it is still possible to compute nu-mately inversely proportional to the locally averaged energy
merically exact eigenvalues ¢f by calculating eigenvalues gap. Therefore, the statements by VW in Rdf], that the
of Ty, [11]. The FDM and the Lanczos method, therefore,eigenvalues in Table Il(Fig. 2 her¢ requiredM =6500 and
share many advantages. Both require only evaluating matrixn Table IV (Fig. 3 her¢ M = 3500 for the FDM to converge,
vector products and both can be implemented by storing onlgre quite misleading. It is well known that widely spaced
a few vectors. The FDM and the Lanczos method obtaireigenvalues and eigenvalues closer to the(tootton) of
eigenvalues from the same Krylov subspace but they explothe spectrum generally converge with fewer Lanczos itera-
different strategies for reducing the matrix representation irtions [11]. Apparently, the FDM also follows this rule. The
the Krylov basis to something manageable. The subspacgigenvalues of Fig. 3 are more widely spaced and, therefore,
spanned by the Lanczos vectors is larger than the subspacenverge more quickly by both methods than the eigenvalues
spanned by the filtered vectors in the FDM. Therefore, inof Fig. 2. Convergence is more sudden when using the Lanc-
exact arithmetidor when the roundoff errors are irrelevant zos method. Note that some FDM eigenvalues in the sparse
the Lanczos algorithm would always yield more accurate ei€nergy region near the middle of the spectr(see Fig. 3
genvalues. With finite arithmetic it is not obvious whetherwere converged with fewer matrix-vector products than their
the FDM or the Lanczos strategy will be better. Some resultdanczos counterparts. However, the Lanczos method con-
indicate that the Lanczos method is sometimes more efficienterged atM ~4500 for all the 2000 eigenvalues of this ma-
[12,13. trix, while M~ 6500 was needed to converge all the eigen-
For the matrix considered by VW, we have compared thevalues by the FDM.
FDM and the Lanczos algorithm. Spurious eigenvalues of To conclude, we have clarified the issue of the relative
T\ are detected and removed using the test of [@4}. The  efficiency of spectral analyses by the FDM and FT and dem-
results for two representative energy windows are shown imnstrated for the test matrix of Refl] that the FDM is
Figs. 2 and 3 corresponding to, respectively, Tablegdiid  substantially more efficient. We have also compared the
Fig. 1 here and IV of Ref.[1]. For each figure, when chang- FDM and the Lanczos method. The convergence of the FDM
ing N we implemented a fixed energy window with the sizeis more uniform and predictable and may be faster for certain
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